Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals.

نویسندگان

  • Anton V Malko
  • Young-Shin Park
  • Siddharth Sampat
  • Christophe Galland
  • Javier Vela
  • Yongfen Chen
  • Jennifer A Hollingsworth
  • Victor I Klimov
  • Han Htoon
چکیده

We report a systematic study of photoluminescence (PL) intensity and lifetime fluctuations in individual CdSe/CdS core/shell nanocrystal quantum dots (NQDs) as a function of shell thickness. We show that while at low pump intensities PL blinking in thin-shell (4-7 monolayers, MLs) NQDs can be described by random switching between two states of high (ON) and low (OFF) emissivities, it changes to the regime with a continuous distribution of ON intensity levels at high pump powers. A similar behavior is observed in samples with a medium shell thickness (10-12 MLs) without, however, the PL intensity ever switching to a complete "OFF" state and maintaining ca. 30% emissivity ("gray" state). Further, our data indicate that highly stable, blinking-free PL of thick-shell (15-19 MLs) NQDs ("giant" or g-NQDs) is characterized by nearly perfect Poisson statistics, corresponding to a narrow, shot-noise limited PL intensity distribution. Interestingly, in this case the PL lifetime shortens with increasing pump power and the PL decay may deviate from monoexponential. However, the PL intensity distribution remains shot-noise limited, indicating the absence of significant quantum yield fluctuations at a given pump power intensity during the experimental time window.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals.

Blinking of zinc blende CdSe-based core/shell nanocrystals is studied as a function of shell materials and surface ligands. CdSe/ZnS, CdSe/ZnSe/ZnS and CdSe/CdS/ZnS core/shell nanocrystals are prepared by colloidal synthesis and six monolayers of larger bandgap shell materials are grown over the CdSe core. Organic-soluble nanocrystals covered with stearate are made water-soluble by ligand excha...

متن کامل

Influence of the core size on biexciton quantum yield of giant CdSe/CdS nanocrystals.

We present a systematic study of photoluminescence (PL) emission intensity and biexciton (BX) quantum yields (QYBX) in individual "giant" CdSe/CdS nanocrystals (g-NCs) as a function of g-NC core size and shell thickness. We show that g-NC core size significantly affects QYBX and can be utilized as an effective tuning parameter towards higher QYBX while keeping the total volume of the g-NC const...

متن کامل

Near-unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy.

Biexciton photoluminescence (PL) quantum yields (Q(2X)) of individual CdSe/CdS core-shell nanocrystal quantum dots with various shell thicknesses are derived from independent PL saturation and two-photon correlation measurements. We observe a near-unity Q(2X) for some nanocrystals with an ultrathick 19-monolayer shell. High Q(2X)'s are, however, not universal and vary widely among nominally ide...

متن کامل

Crystal Phase Transitions in the Shell of PbS/CdS Core/Shell Nanocrystals Influences Photoluminescence Intensity

We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS-shell of PbS/CdS core/shell nanocrystals formed by cationic exchange. The chemical composition profile of the core/shell nanocrystals with different dimensions is determined by means of anomalous small-angle X-ray scattering with subnanometer resolutio...

متن کامل

Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions.

We report single-particle photoluminescence (PL) intermittency (blinking) with high on-time fractions in colloidal CdSe quantum dots (QD) with conformal CdS shells of 1.4 nm thickness, equivalent to approximately 4 CdS monolayers. All QDs observed displayed on-time fractions > 60% with the majority > 80%. The high-on-time-fraction blinking is accompanied by fluorescence quantum yields (QY) clos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 12  شماره 

صفحات  -

تاریخ انتشار 2011